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Background
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Pairwise relational modeling of complex systems

Complex systems are typically modeled as 
graphs with signals attached to the nodes 
and edges

- friendships in social networks
- molecule interactions
- WorldWideWeb
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The surge in Graph Representation Learning

The aim is to learn data-driven representations of nodes or entire graphs. These 
can be used for node/graph regression/classification.
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Graph Neural Networks (GNNs)

Message & Aggregate: Each node 
receives an aggregated message from 
all its neighbours. 

M: processes messages

AGG: aggregates processed messages
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Graph Neural Networks (GNNs)

Update: Each node updates their 
own features as a function of the 
aggregated messages and its 
current features.
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Graph Neural Networks (GNNs)

Readout: To obtain a global embedding, 
the final features of the nodes are 
aggregated in a single vector. 

READOUT: typically mean or sum, but can 
be any multiset function.
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The Weisfeiler-Lehman (WL) algorithm

The WL algorithm tests isomorphism 
between graphs [1].

It iterates colour refinements via 
hashing of neighboring colours:

Example of execution of the WL test on two isomorphic graphs [2]

The WL test works for almost, but 
not all graphs.
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[1]: The reduction of a graph to canonical form and the algebra which appears therein (Weisfeiler and Lehman, NTI Series, 1968)
[2]: Expressive power of graph neural networks and the Weisfeiler-Lehman test, blogpost

https://towardsdatascience.com/expressive-power-of-graph-neural-networks-and-the-weisefeiler-lehman-test-b883db3c7c49


Beyond graphs
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Pairwise modeling is not enough

Higher-order structures better 
capture the behavior of many 
complex systems

● Chemical reactions [1]
● Multi-body interactions [2]
● Interaction of biomolecules [3]
● Ecological systems [4]
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[1]: Hypergraph Laplace operators for chemical reaction networks (Jost and Mulas, 2019)
[2]: Multibody interactions and nonlinear consensus dynamics on networked systems (Neuhäuser et al., 2020)
[3]: Signaling Hypergraphs (Ritz et al., 2014)
[4]: Ecological networks over the edge: Hypergraph trait-mediated indirect interaction (TMII) structure (Golubski et al., 2016)

Comparison of representations for events that occur in signaling 
pathways, figure from [1].



Pairwise modeling is not enough
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Comparison of representations for events that occur in signaling 
pathways, figure from [1].

[1]: Signaling Hypergraphs (Ritz et al., 2014)

Deceptive Interpretation

Representation limits

Information loss



Pairwise modeling is not enough
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[1]: Networks beyond pairwise interactions (Battiston et al., 2020)
[2]: Ecological networks over the edge: Hypergraph trait-mediated indirect interaction (TMII) structure (Golubski et al., 2016)
[3]: Rank abundance relations in evolutionary dynamics of random replicators (Yoshino, 2008)

Coffee agroecosystem in southern Mexico. Figure from [2].Illustration of mediated interactions. Figures from [1].

⇒ these forms of higher-order interactions have been studied to favour variance of species at 
equilibrium [3]



GNNs have limited expressivity power

GNNs can be made at most as powerful as the 
WL test with proper parameterisation [1]

If WL fails to distinguish a non-isomorphic pair, 
any GNN does!

“Corollary”: GNNs inherit the WL limitations [2] 
in counting graph substructures (e.g. triangles).

13

[1]: How Powerful are Graph Neural Networks? (Xu et al., ICLR 2019)
[2]: Can Graph Neural Networks Count Substructures? (Chen et al., NeurIPS 2020)



Higher-Order Features

Image from [1]. Field on the surface of a macromolecule

How should higher-order features be processed?
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Trajectories in 2D. Originally introduced in [2]

[1]: The de Rham–Hodge Analysis and Modeling of Biomolecules (Zhao et al., Bulletin of Mathematical Biology, 2020)
[2]: Random Walks on Simplicial Complexes and the normalized Hodge 1-Laplacian (Schaub et al., SIAM Review, 2020)



Simplicial Complexes 

A simplicial complex on a vertex set V is a collection K of nonempty subsets of V 
(simplices) such that:

● it is closed under taking subsets
● contains all the singleton subsets of V
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Oriented Simplicial Complexes

For each simplex, we can choose an orientation, which can be positive or negative.

By representing simplices as ordered tuples, even permutations of the vertices 
result in a positive orientation, while odd permutations produce a negative 
orientation.  
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Oriented Simplicial Complexes

Why orientation? Because many signals in nature depend on an orientation:

The direction of integration flips the sign The sign convention in a circuit

Second, they are required to preserve more sophisticated connections with 
differential geometry and algebraic topology.
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Oriented Simplicial Complexes

An oriented simplicial complex is a simplicial complex where each simplex has 
been assigned an orientation.
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Boundary matrices
We can encode (signed) adjacencies with the help of (signed) boundary matrices.
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Hodge Laplacians

For each dimension of the complex, one can define a Hodge Laplacian [1, 2, 3, 4].  

In dimension zero (i.e. for vertices), this becomes the well-known Graph Laplacian.  
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[1]: Hodge Laplacian on Graphs (Lim et al., SIAM Review, 2015)
[2]: Topological Signal Processing over Simplicial Complexes (Sardellitti et al., Transactions on Signal Processing 2020)
[3]: Random Walks on Simplicial Complexes and the normalized Hodge 1-Laplacian (Schaub et al., SIAM Review, 2020)
[4]: Control Using Higher Order Laplacians in Network Topologies (Muhammad et al., ISMTNS, 2006)



Extra: Differential Geometry & Algebraic Topology
Geometric view: Signals on oriented simplicial complexes can be seen as (vector-valued) 
differential k-forms. Transposed boundary matrices represent discrete exterior derivatives.

Topological view: Scalar signals are like the number of “oriented copies” of each simplex. Boundary 
matrices represent simplicial boundary operators.

CMU Course in Discrete Differential Geometry: https://brickisland.net/DDGSpring2021/

University of Oxford Course in Computational Algebraic Topology: http://people.maths.ox.ac.uk/nanda/cat/  
21

https://brickisland.net/DDGSpring2021/
http://people.maths.ox.ac.uk/nanda/cat/


Simplicial Complexes vs. Hypergraphs

● Well understood spectral properties 
(Hodge Laplacian)

● Connections with differential 
geometry and algebraic topology 

● Connection with physical diffusion 
processes

● Can easily handle interactions of 
different dimensions.

● Canonical representation: boundary 
matrices. 

● The most general description of 
higher-order interactions

● No subset-inclusion constraint
○ suitable for certain groupwise 

interactions, e.g. protein complexes
● Hyperedges can (recursively) 

include other hyperedges

Simplicial Complexes Hypergraphs
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Message Passing Simplicial Networks
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Simplicial Weisfeiler-Lehman

We want a theoretical tool to analyse message passing on simplicial complexes.

Let K be a simplicial complex. Simplicial WL (SWL) proceeds as follows:

1. Assign each simplex s in K an initial colour. 
2. Compute the colour of s at the current time-step by hashing the colours of its 

neighbouring simplices.
3. Repeat for a finite number of steps or when the colours converge. 
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Four kinds of adjacencies: Face adjacencies

set of faces

multiset of face colours 25



Four kinds of adjacencies: coface adjacencies

set of cofaces

multiset of coface colours 26



Four kinds of adjacencies: lower adjacencies

Two d-simplices are 
lower adjacent if they 
share a common face of 
dimension d-1

shared face

set of lower-neighbours

multiset of lower-neighbours colour-tuples

shared face
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Four kinds of adjacencies: upper adjacencies

Two d-simplices are upper 
adjacent if they share a 
common coface of 
dimension d+1

shared coface

set of upper-neighbours

multiset of upper-neighbours colour-tuples 28



All adjacencies

In terms of the boundary matrices, adjacencies for the i-simplices are given by:

● Face & Coface adjacencies → The non zero elements of 
● Lower adjacencies → The non-zero entries of 
● Upper adjacencies → The non-zero entries of 
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SWL: Putting everything together

For maximum expressivity, we include all adjacencies in the colour refinement rule:
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(d-1)-dim faces (d+1)-dim cofaces

old colour

lower adj + shared faces

upper adj + shared co-faces



Understanding adjacencies
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Signals propagate at different rates in the horizontal and vertical directions.

Face & Coface Adjacencies Lower & Upper Adjacencies



Pruning adjacencies

SWL with colour refinement rule

is as powerful as SWL with the 
generalised one [Lemma1, Theorem 2].

Why these specific adjacencies?

● SWL corresponds to WL when applied on 1-complexes (graphs)
● the complexity remains linear in the size of the complex (more on this later)

we can “drop” coface- and lower- 
adjacencies with no impact on the 
expressivity of the test

⇒ 
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Clique Complexes

Given graph G, its associated Clique Complex KG 
is the Simplicial Complex obtained by considering 
each d-clique in G as a (d-1)-simplex in KG.
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SWL is strictly more powerful than WL

1) SWL is at least as powerful as WL 
[Lemma 22]:

If WL distinguishes two non-isomorphic 
graphs, SWL does as well! 

2) SWL distinguishes pairs which WL does 
not, when run on the corresponding 
clique-complexes.

⇒ SWL is strictly more powerful than 
WL [Theorem 3]

Pair of non-isomorphic graphs distinguished 
by  SWL, but not by WL.
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Higher-order WL test

The k-WL algorithm initialises all node-k 
tuples with colours based on iso-class.

It iterates colour refinements applied on 
all node k-tuples in the graphs:

Extended notion of neighbourhood

For k≥2, (k+1)-WL is strictly 
stronger than k-WL:

There exist pairs non-isomorphic  
graphs that k-WL cannot distinguish 
while (k+1)-WL can (not vice-versa)
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SWL is not less powerful than 3-WL

1) 3-WL provably fails to distinguish 
between any pair of Strongly Regular 
Graph in the same family [Lemma 23]

2) SWL can distinguish the two SR 
Graphs in family SR(16,6,2,2)

⇒ SWL is not less powerful than 3-WL 
[Theorem 4]

Pair of non-isomorphic SR graphs distinguished by 
SWL, but not by 3-WL.

Family: SR(16,6,2,2); they are associated with distinct 
clique complexes.

Rook’s 4x4 Shrikhande
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The neural counterpart of SWL: MPSNs

Message & Aggregate

Update

Readout
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MPSNs can be made as powerful as SWL 

1) MPSNs are at most as powerful as SWL [Lemma 5]

2) MPSNs with a sufficient number of layers and 
injective message, aggregate and update functions are 
as powerful as SWL [Theorem 6]

⇒ There exists an MPSN more powerful than WL at 
distinguishing non-isomorphic graphs when using a 
clique-complex lifting because such parametric 
functions exist [1, 2] [Corollary 7]
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[1]: How Powerful are Graph Neural Networks? (Xu et al., ICLR 2019) 
[2]: Principal Neighbourhood Aggregation for Graph Nets (Corso et al., NeurIPS 2020)



Other (recent) simplicial neural networks

The MPSN framework generalises both approaches [Theorem 8]

SNN [1], similar to ChebNet [3] Simplicial CNN [2], similar to GCN [4]
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[1]: Simplicial Neural Networks (Ebli et al., TDA and Beyond NeurIPS 2020 Workshop) 
[2]: Simplicial 2-Complex Convolutional Neural Networks (Bunch et al., TDA and Beyond NeurIPS 2020 Workshop)
[3]: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering (Defferrard et al., NIPS 2016)
[4]: Semi-Supervised Classification with Graph Convolutional Networks (Kipf et al., ICLR 2017)



Permutation equivariance
GNN layers are (node) permutation equivariant:

Theorem 9. MPSN layers are (simplex) permutation equivariant. For each dimension i:

Adjacencies Features

Adjacencies Features
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Orientation equivariance: Functions

Mathematically, the choice of orientation is arbitrary and, therefore, irrelevant. If orientation 
is changed, we would like activations to be the same up to a change in orientation. 

Must be an odd function
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Orientation equivariance: Structure
Changes in orientation amounts to multiplying the corresponding rows and columns by +/- 1.
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Orientation equivariance
For each dimension i, we define the following matrices of size 

MPSN layers are orientation equivariant if for each dimension i:

Adjacencies Features
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Orientation equivariance for a simple MPSN layer
Consider a simple MPSN layer using linear transformations + a non-linear activation.

Lower adj. Just features Upper adj. Faces Co-faces

Proposition 30. This layer is orientation equivariant iff      is an odd function (e.g. id, tanh). 
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The expressivity power of MPSNs by linear regions

Linear regions of a piecewise linear function are subdivisions of the graph of the 
function, or the collection of all individual connected regions in the real space with 
hyperplanes determined by the piecewise linear functions removed.

● Number of linear regions can show the distinction between traditional shallow 
and deep neural networks

● Related to approximation property of the networks
● Representational power of convolutional neural networks
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[1]: On the number of linear regions of deep neural networks? (Montufar et al., NIPS 2014) 
[2]: On the number of linear regions of convolutional neural networks (Xiong et al., ICML 2020)



Linear regions of GNNs and SCNNs

One-layer GNN One-layer SCNN

The aggregation needs linear and invertible.
     is number of graph nodes
d is the dimension of feature
m is the number of output features
Activated by ReLU

The simplicial Laplacian needs invertible.
      is number of n-simplices
     is the dimension of input feature for n-sim.
     is the number of output features
Activated by ReLU 
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MPSN Revisit
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Linear regions of MPSNs

Upper Bound
Lower Bound vs 
Trivial Upper Bound
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MPSNs attain better bounds than SNNs and GNNs

A 2D slice of the input feature 
spaces of GNN, SCNN, MPSN 
layers with S0 = S1 = 3, S2 = 1 
(the complex is a triangle), d0 = 
d1 = d2 = 1, m = 3, colored by 
linear regions of the 
represented functions, for a 
random choice of the weights.
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Linear regions with populated higher-order features
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MPSN complexity is linear in the size of the complex

Message passing: →

Faces Upper 
neighbors

(small p)

Complex 
dimension

d-Simplices in 
the complex

Caveat: may get quadratic when considering down adjacencies
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The clique-lifting procedure is empirically tractable

● Finding all the maximal cliques in a graph has worst case complexity
● Finding cliques of a specified max size in (sparse) real-world graphs is 

significantly faster in practice.
● Simplex trees, from the GUDHI topological data analysis library (empirically) 

scale linearly with the number of simplices.  
● Theoretical guarantees for the number of simplices exist when the max 

degree of the graph is known.
● Performance is expected to be significantly better than k-WL’s                  

since the number of k-cliques in a graph is 
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https://gudhi.inria.fr/doc/3.4.1/


Results
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Simplicial Isomorphism Networks
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The MPSN counterpart of GIN [1]:

[1]: How Powerful are Graph Neural Networks? (Xu et al., ICLR 2019) 



Disambiguating Strongly Regular Graphs

We run an MPSN architecture (SIN) on 
the clique-complexes of SR Graphs:

● SIN can distinguish pairs within 
the same family (WL, 3-WL 
provably fail on all)

● Message passing allows to 
distinguish between additional 
pairs

same inputs,
no msg passing

ours, 5 layers

~ 17% (∆: 283 pairs)

SR family
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Classifying real-world graphs (TUDatasets)
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Classifying synthetic trajectories

Task: distinguish between trajectories 
above the upper hole and below the 
lower hole.

Model Test Accuracy

GNN 71.5 %

MPSN 96.5 %

4
x

Triangle awareness

4x

57[1]: Random Walks on Simplicial Complexes and the normalized Hodge 1-Laplacian (Schaub et al., SIAM Review, 2020)

The task is adapted from [1]



Classifying ocean drifter trajectories

Task: distinguish between clockwise and counterclockwise  
drifter trajectories around Madagascar (2011-2018).

Model Test Accuracy

GNN 45 %

MPSN 75 %

4x

4x

58[1]: Random Walks on Simplicial Complexes and the normalized Hodge 1-Laplacian (Schaub et al., SIAM Review, 2020)

The task is adapted from [1]



Conclusions

● We introduce a colouring algorithm for SC isomorphism testing: SWL
● SWL inspires a neural message passing framework on SCs (MPSNs)
● SWL and MPSNs on clique complexes are provably more expressive 

than WL
● Allowing features of different dimensions to interact increases the number 

of linear regions: GNNs → SCNNs → MPSNs
● Experiments on synthetic and real world datasets confirm:

○ expressiveness of MPSNs
○ additional advantages from higher-order interactions
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Limitations

● Clique complexes do not help with certain graphs. Other graph-lifting 
procedures might be able to address this.

● Simplices might not perfectly reflect the notion of a “cell”. For instance, 
cubical complexes might be better suited for a map of Manhattan.

● Signals on higher-order objects might not exist and do not always have a 
physical correspondence.

Pair of non-isomorphic cubical complexes that 
cannot be disambiguated by the WL test.

Pair of non-isomorphic molecular graphs that 
cannot be disambiguated by either the SWL 
or the WL test. 60



Open Problems
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● Other message passing schemes that retain the expressive power
● Better understanding of the advantages of SWL
● What is the best way to construct simplicial complexes from data?
● What is the best way to construct higher-order features? 
● What are the differences between orientation-equivariant MPSNs and 

regular MPSNs in GNN benchmarks? 
● The resurrection of edge features?
● How can MPSNs unify existent work on triangular meshes and graphs?
● More theoretical analysis using differential geometry & topology.
● What GNN results can we generalise to MPSNs?  



Thank you!
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